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Alteration in Sexually Dimorphic Testosterone Biotransformation Profiles as
a Biomarker of Chemically Induced Androgen Disruption in Mice
Vickie S. Wilson, James B. McLachlan, J. Greg Falls, and Gerald A. LeBlanc
Department of Toxicology, North Carolina State University, Raleigh, NC 27695 USA

Assessment of the impact of environmental chemicals on androgen homeostasis in rodent models
is confounded by high intraindividual and interindividual variability in circulating testosterone
levels. Our goal was to evaluate changes in testosterone biotransformation processes as a measure
of androgen homeostasis and as a biomarker of exposure to androgen-disrupting chemicals. Sex-
specific differences in hepatic testosterone biotransformation enzyme activities were identified in
CD-i mice. Gonadectomy followed by replacement of individual steroid hormones identified
specific sex differences in biotransformation profiles that were due to the inductive or suppressive
effects of testosterone. Notably, significant androgen-dependent differences in testosterone 6a-
and 15a-hydroxylase activities were demonstrated, and the ratio of 6w and 15a-hydroxylase
activities proved to be an excellent indicator of the androgen status within the animaL The male
or "masculinized" testosterone 6alotISt-hydroxylase ratio was significantdy less than the female or
"feminized" ratio. Male mice were exposed to both an antiandrogen, vinclozolin, and to a com-
pound that modulates serum androgen levels, indole-3-carbinol, to test the utility of this ratio as
a biomarker of androgen disruption. Treatment with the antiandrogen vinclozolin significantly
increased the 6ax1l5a-hydroxylase ratio. Indole-3-carbinol treatment resulted in a dose-depen-
dent, but highly variable, decrease in serum testosterone levels. The 6aIlSa-hydroxylase ratio
increased as serum testosterone levels decreased in these animals. However, the increase in the
ratio was much less variable and more sensitive than serum testosterone levels. These investiga-
tions demonstrate that the 6a/150-hydroxylase ratio is a powerfil measure of androgen modula-
tion and a sensitive indicator of exposure to androgen-disrupting chemicals in CD-1 mice. Key
work androgen disruption,.biomarker, biotransformation, sexually dimorphic metabolism,
testosterone. Environ Heah Pepect 107:377-384 (1999). [Online 2 April 1999]
http://ehpnet1.niehs.nih.gov/docs/ 9,99/107p377-384wikon/abstract.htmI

Maintenance of steroid hormone homeosta-
sis within an organism is critical to ensuring
male and female sexual functions, including
sexual differentiation and reproduction (1).
Steroid hormones play a decisive role in sex-
ual differentiation of the gonads and acces-
sory reproductive organs occurring during
prenatal and neonatal development (2). In
addition, steroid hormones influence the
acquisition and maintenance of secondary
sex characteristics in adults (3). Recently,
concern has been raised that both humans
and wildlife are being exposed to endocrine-
disrupting chemicals in the environment
and that these compounds may be eliciting
adverse effects on development and fertility
along with contributing to the increasing
rates of certain types of cancers (4-9).
Recent clinical observations including
increased incidence of male genital tract
malformations, (10-13), reductions in
sperm count (14), and increased incidence
of testicular (15,16), prostate (17), and
breast cancer (16,18) have been suggested to
be linked to exposure to these chemicals.
Speculation remains as to whether human
health issues are associated with the exis-
tence of endocrine-disrupting chemicals in
the environment (16,18-20). However,
concerns connected with hormone-related
health problems in humans along with good

evidence in wildlife of endocrine disruption
(21,22), a growing knowledge base of hor-
monally active chemicals (23), and well-
controlled experiments demonstrating
developmental effects in model organisms
consistent with those seen in humans and
wildlife (9,24-26) have led Congress to
pass two pieces of legislation that mandate
the design of testing programs to identify
endocrine-disrupting chemicals.

Several studies have suggested that toxi-
cant-induced alterations in steroid hor-
mone levels or metabolism contribute to
reproductive impairment and that changes
in steroid hormone levels can be indicative
of endocrine-disrupting chemical exposure
(27-30). However, in many commonly
used and widely accepted rodent models,
the utility of the measurement of circulat-
ing serum hormone levels alone as an indi-
cator of exposure to androgen-disrupting
chemicals is limited. In male laboratory
mice and males of several other species,
including humans, there is striking intra-
individual and interindividual variability in
testosterone levels (31-34). Thus, it is
extremely difficult to detect statistically sig-
nificant differences in steroid hormone lev-
els due to exposure to a xenobiotic. Subtle
disturbances in homeostatic mechanisms by
a xenobiotic may go undetected until more

profound irreversible effects are manifested.
This toxicity is especially insidious during
sex differentiation and development because
of the critical role of gonadal steroid hor-
mones in regulating these processes. A more
sensitive biomarker of androgen disruption
due to chemical exposure is needed.

The hepatic cytochrome P450-depen-
dent monooxygenase system (P450) plays a
central role in metabolism. This system is
not only important in the detoxification of
foreign compounds but also is responsible
for the oxidative metabolism of endogenous
substrates such as steroid hormones (35-38).
Despite their broad substrate specificity,
however, P450 isozymes hydroxylate testos-
terone in a characteristic and unique manner
that is both region specific and stereospecific
(39). Modulation of individual hepatic
steroid hydroxylase activities by hormones
(40,41) and sex-dependent expression of
hepatic steroid metabolizing enzymes in rat
is well-established (42).

In addition to hydroxylation, direct
conjugation is a second major route of
metabolism (1). Uridine diphosphate
(UDP)-glucuronosyltransferase or sulfo-
transferase enzymes can conjugate glu-
curonic acid or sulfate, respectively, to
testosterone either directly or subsequent to
hydroxylation. These reactions generally
produce more water-soluble compounds
that can then be excreted in urine (43).
Some studies have suggested sexually
dimorphic UDP-glucuronosyltransferase
activity in humans and in mice, but results
from other studies in humans have not sup-
ported these observations (49,50). A possi-
ble explanation for these conflicting results
may be that, because multiple isoforms of
UDP-glucuronosyltransferase enzymes exist
(51,52), some may be affected by sex while
others are not. Sulfotransferase enzymes are
also expressed in multiple forms, and there
is evidence that their expression can be
modulated by steroid hormones (53).

In this study, we hypothesized that
changes in androgen-regulated testosterone
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biotransformation processes in CD-1 mice
could be used as a sensitive biomarker of expo-
sure to some endocrine-disrupting chemicals.
The primary goals of this study were to 1)
identify specific sex differences in constitutive
steroid biotransformation activities in the CD-
1 mouse model; 2) determine the role of
androgens in the regulation of these activities;
3) identify an activity that might best serve as a
biomarker of exposure to androgen-disrupting
chemicals; and 4) validate this biomarker using
organisms exposed to xenobiotics that either
act as androgen antagonists or modulate
endogenous androgen levels.

Materials and Methods
Animals. Eight-week-old adult male and
female CD-1 mice (sexually intact animals,
sham-operated controls, and gonadec-
tomized animals) were purchased from
Charles River Laboratories (Raleigh, NC, or
Portage, ME). Sham-operated, gonadec-
tomized, and respective control mice desig-
nated for hormonal regulation experiments
were allowed a 2-week recovery period after
surgery at our facility before implantation
of hormone pellets. All other mice were
held at our animal facility for at least 1
week prior to initiation of treatment. Each
chemical and/or surgical treatment, the sex,
and the number of mice per treatment used
in this study are summarized in Table 1. All
animals were treated according to research
protocols approved by the North Carolina
State University Institutional Animal Care
and Use Committee and held under con-
trolled temperature (65-70°F) and light
(12-hr diurnal light cycle) conditions.

Hormone treatments. To evaluate the
potential role of individual steroid hormones

in vivo on the expression of testosterone bio-
transformation activities, individual gonadal
steroid hormones were administered to both
intact and surgically gonadectomized male
and female mice. Testosterone was initially
evaluated for its ability to regulate androgen
biotranisformation activities. Gonadecto-
mized animllals (male and female) were
implanted with either testosterone (5 mg), or
placebo pellets (Innovative Research of
America, Sarasota, FL), which corresponds
to calculated dosages of 0.24 or 0
mg/mouse/day. Sham-operated controls
received placebo pellets, whereas gonadally
intact controls received no implants. One
group of gonadally intact females received
testosterone implants. In addition, two
groups of intact males each received either
estradiol implants (0.5 mg) or progesterone
(10 mg) implants, which corresponds to cal-
culated daily dosages of 0.024 or 0.48
mg/mouse/day, respectively. In all cases,
dosages of hormone were selected to provide
physiologically relevant serum hormone lev-
els (54). Each treatment group consisted of
six mice. Animals receiving implants were
anesthetized with a 100-ml subcutaneous
injection of a sterile solution of ketamine
(1.68 mg)/xylazine (0.16 pg)/NaCl (0.9%).
Pellets were implanted subcutaneously below
the right scapula using a trochar; the inci-
sions were closed with surgical clamps. On
the morning of the twenty-first day after
implantation, mice were euthanized by CO,
asphyxiation. Blood was collected and the
livers were rapidly excised, quick frozen in
liquid nitrogen, and then stored at -800C
until microsomes were prepared. Absence of
testes or ovaries in gonadectomized animals
was confirmed by visual inspection.

Table 1. Summary of chemical and surgical treatments

Animals Chemical/surgical Exposure period
Experiment/sex per treatment (n) treatment Dosagea (days)
Hormone replacement
Male 6 Untreated 0 21

Placebo/sham-operated 0 21
Placebo/gonadectomy 0 21
Testosterone/gonadectomy 0.24 21
17p-Estradiol 0.024 21
Progesterone 0.48 21

Female 6 Untreated 0 21
Placebo/sham-operated 0 21
Placebo/gonadectomy 0 21
Testosterone/sham-operated 0.24 21
Testosterone/gonadectomy 0.24 21

Antiandrogen
Male 6 Vinclozolin 0 21

160 21
Androgen modulator
Male 4-8 lndole-3-carbinol 0 7

250 7
500 7
750 7

'Dosages for hormone treatments are milligrams per animal per day. Dosages for other chemical treatments are milligrams per kilogram
body weight per day.

Vinclozolin treatments. Male mice were
dosed once per day wvith 160 nmg/kg/day
vinclozolin (Crescetnt Chemical Co,
Hauppauge, NY) in corn oil via gavage fot
3 weeks. This dosage was chosen because
previous studies have demonstrated antian-
drogenic effects in rodents at similar
dosages of vinclozolin (55). Conitrol ani-
mals were dosed with the sarme v,olume of
corni oil vehicle aloine. Each of the two
groups (treated and control) consisted of six
animals housed together. Animals were sac-
rificed by CO, asphyxiation 24 hr after the
last dose. Livers were immediatelv excised,
rinsed, weighed, and pooled (three sets of
two pooled livers each) for microsonme
preparation. Pooled livers of vinlclozolill-
treated and respective control mice were
immediately homogenized with a tissue
homogenizer and microsomes were pre-
pared by the method detailed below.

Indole-3-carbinol treatments. Male
mice were administered indole-3-carbinol
(13C) (Sigma, St. Louis, MO) in their
food. 13C was thoroughly mixed into
ground standard mouse chow (Agway
Prolabs, Creedmoor, NC) with a food
processor at concentrations that provided
estimated daily 13C dosages of 250, 500,
and 750 mg/kg. Food consumptioni was
monitored daily to ensure proper treat-
ment. Control mice were fed the same diet
without 13C added. The mice exhibited no
observable adverse effects due to these
treatment levels. After 7 days of treatment,
mice were euthanized. Blood was collected
by cardiac puncture. Livers were excised,
quick frozen in liquid nitrogen, and stored
at -80°C until microsomes were prepared.

Microsome and cytosol preparation.
Individual livers were thawed and homoge-
nized on ice in chilled buffer (0.1 M
HEPES, pH 7.4, 1 mM EDTA, and 10%
glycerol) with a Dounce tissue homogenizer
(Kontes, Vineland, NJ). Microsomes were
prepared by differential centrifugation (56).
Cytosolic supernatant was reserved, micro-
somal pellets were resuspended in buffer
(0.1 M potassium phosphate, pH 7.4, 0.1
mM EDTA, and 20% glycerol), and both
were stored at -80°C until assays were per-
formed. Protein concentrations were deter-
mined using commercially prepared
reagents (Biorad, Hercules, CA) and bovine
serum albumin (Sigma) as a standard.

Testosterone hydroxylase assays. Testos-
terone hydroxylase activities in mouse livers
were assayed as previously described
(38,58) using 400 pg microsomal protein
and 40 nmol [14C]testosterone as the sub-
strate (1.8 pmCi/mmol; Dupont NEN,
Boston, MA) in 0.1 M potassium phos-
phate buffer (pH 7.4). Reactions Were coIn-
ducted at 37°C and initiated with 1 mM
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NADPH. The total assay volume was 400
pl. The reaction was terminated after 10
min by adding 1 ml ethyl acetate and vor-
texing. Product formation was linear over
this time period. Each tube was vortexed
for 1 min and then centrifuged for 10 min
to separate the ethyl acetate and aqueous
phases. Ethyl acetate fractions were trans-
ferred to a fresh tube. The aqueous phase
was extracted with ethyl acetate a total of
three times (1 ml, 2 ml, 1 ml, respectively)
to ensure recovery of all hydroxyl metabo-
lites. Combined ethyl acetate fractions
from each aqueous sample were evaporated
under a stream of nitrogen to dryness. The
residue was resuspended in 70 pl ethyl
acetate (35 pl x 2) and metabolites were
separated by thin-layer chromatography
(TLC). Unmetabolized [14C]testosterone
and individual [14C]metabolites were iden-
tified and then quantified by liquid scintil-
lation spectroscopy as previously described
(58). Specific activity for each metabolite
was calculated as picomoles of metabolite
produced per minute per milligram of
microsomal protein.

UDP-Glucuronosyltransferase assay.
UDP-glucuronosyltransferase activity toward
[14C]testosterone was assayed under condi-
tions previously described (48,50).
Microsomal protein (200 pg) was incubated
at 37°C with 40 nmol [14C]testosterone (1.8
pmCi/gmol) in 0.1 M potassium phosphate
buffer, pH 7.4. Reactions were initiated with
10 # uridine 5'-diphospoglucuronic acid in
buffer (12.9 mg/ml; Sigma) to give a total
assay volume of 400 p1 and were terminated
after 10 min by adding 2 ml ethyl acetate
and vortexing. Product formation was shown
to be linear over this time period. Phases
were separated by centrifugation, and ethyl
acetate fractions were removed. Extraction
was repeated a second time with an addition-
al 2 ml of ethyl acetate. Glucuronic acid con-
jugates were quantified by liquid scintillation
counting of a 100-l aliquot from the pos-
textraction aqueous phase. Samples that con-
sisted of all constituents except NADPH or
microsomes were run with each assay. These
samples were used to account for any sponta-
neous conjugation of flucuronic acid to
testosterone and any [1 C]testosterone that
was not extracted from the aqueous phase by
the ethyl acetate. Specific activity was calcu-
lated as picomoles of conjugate produced per
minute per milligram ofmicrosomal protein.

Sulfotransferase assay. Sulfotransferase
activity was determined as previously
described (48). Briefly, 200 pg of cytosolic
protein from each sample was combined with
40 nmol [14C]testosterone (1.8 pCi/pmol) in
0.1 M potassium phosphate buffer, pH 6.5.
Each reaction was initiated with 10 p1 adeno-
sine-3'-phosphate-5'-phosphosulfate in

buffer (10 mg/ml; Sigma) for a total assay
volume of 400 p1. Assay tubes were covered
with parafilm and incubated in a 370C water
bath for 20 hr. Reactions were shown to be
linear over this time period. Reactions were
stopped by adding 2 ml ethyl acetate and vor-
texing the sample tube. Unconjugated testos-
terone was removed by ethyl acetate extrac-
tion (two times, 2 ml each). Sulfate conju-
gates were quantified by liquid scintillation
counting of a 100-p1 aliquot from the postex-
traction aqueous phase. Retention of sulfate
conjugates in the aqueous phase averaged
70%. Therefore, sulfate conjugates extracted
into the ethyl acetate were separated from the
[14C]testosterone by TLC using an 80%
methylene chloride: 20% acetone solvent sys-
tem. Sulfate-conjugated [14C]testosterone
was then cut from the TLC plate and was
quantified by liquid scintillation spec-
troscopy. Total disintegrations per minute
(dpm) associated with sulfate-conjugated
[14C]testosterone from each sample were
combined to calculate specific activity (pico-
moles per minute per milligram.

Serum testosterone measurements. Blood
from each animal was allowed to clot at
room temperature for at least 15 min, and
serum was obtained by centrifugation at
14,000g for 10 min. Serum was then imme-
diately frozen at -200C until assayed. Total
testosterone was measured within 5 days of
serum preparation by solid-phase radioim-
munoassay using commercially available
reagents and protocols (Diagnostic Products
Corp., Los Angeles, CA). The limit for the
detection of testosterone in serum with this
assay was 0.04 ng/ml.

Statistical analysis. Statistical significance
(p<0.05) among the various parameters
assessed was established by Student's t-test
when a single treatment was compared to
the control, or by using ANOVA and
Dunnett's Multiple Comparison Test when
multiple levels of a single chemical treat-
ment were compared to their respective
control group. Statistical analyses were per-
formed using JMP (SAS Institute, Cary,
NC) statistical software.

Results
Sexually dimorphic testosterone biotranfor-
mation in CD-i mice. Previous studies in
our lab have identified at least seven major
mono-hydroxylated testosterone metabo-
lites produced from hepatic microsomes of
CD-1 mice, some of which appeared to be
generated in a sexually dimorphic manner
(48,58). In untreated animals, total testos-
terone hydroxylase activity was comparable
in both sexes; however, isolation and quan-
tification of individual hydroxylated testos-
terone metabolites revealed sex-specific dif-
ferences in the production rates of at least
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Figure 1. Sexual dimorphisms in hepatic testos-
terone hydroxylase and conjugation activities in
CD-i mice. Data are represented as means ±
standard deviations (n = 3).
*Stabstically significant difference between male and female spe-
cific activities (Student's t-test, p<O.05).

two of these metabolites (48). As illustrated
in Figure 1, hepatic testosterone 6a-
hydroxylase (6a-OH) activity was consis-
tently higher in female mice than in male
mice. Conversely, testosterone 15ax-hydrox-
ylase (1 5a-OH) activity was consistently
higher in male mice (Fig. 1). Our results
also showed that the constitutive rate of
specific activity of UDP-glucuronosyltrans-
ferase was higher in hepatic microsomes
from male mice, whereas sulfotransferase
activity was consistently higher in hepatic
cytosol from females (Fig. 1). These consis-
tent differences in testosterone biotransfor-
mation between males and females indicate
a possible regulatory role for gonadal steroid
hormones in one or more of these activities.

Gonadectomy and hormone replacement
experiments: testosterone. The effects of
gonadectomy and subsequent testosterone
replacement on 6a- and 1 5a-hydroxylase
activities and on UDP-glucuronosyltrans-
ferase and sulfotransferase conjugations are
shown in Figures 2 and 3, respectively.
There was no statistically significant differ-
ence between gonadally intact controls and
sham-operated controls with respect to 6a-
or 15a-hydroxylase activity in any of the
treatments; therefore specific activities for
controls and sham-operated mice were com-
bined for all additional statistical compar-
isons. Gonadectomy and testosterone
replacement produced a dramatic effect on
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Figure 2. Effect of gonadectomy (gonadex) and testosterone replacement on hepatic testosterone (A) 6cc-
hydroxylase- and (B) 15ax-hydroxylase-specific activities in both adult male and female CD-1 mice. Data
are presented as means ± standard deviations (n = 3 sets of two pooled livers each). There was no statis-
tically significant difference between intact controls and sham-operated controls (Student's t-test,
p<0.05), so specific activities for control and sham-operated controls were combined for all additional
statistical comparisons.
*Statistically significant difference when compared to combined male controls (p<0t05).
`Statistically significant difference when compared to combined female controls (p<0.05).

both 6u- and 1 5-hydroxylase activities (Fig.
2). In control animals, as expected, testos-
terone 6u-OH activity was significantly high-
er in females, whereas 15a-hydroxylase was

higher in males. However, gonadectomy of
male mice significantly increased 60c-OH, as

compared with male controls, to levels not

significantly different from that measured in
female controls (Fig. 2A). Replacement of
testosterone to gonadectomized males
reduced 60c-OH activity to that seen in con-

trol males. In female mice, neither testos-

terone administered to gonadally intact ani-

mals nor gonadectomy of female mice signifi-
cantly lowered 60c-OH activity as compared
to female controls. Testosterone treatment of
gonadectomized females, however, signifi-
cantly reduced 60OH activity, as compared
to female controls, to levels comparable to

that of male controls. Taken together, these
experiments indicate that testosterone has a

suppressive effect on hepatic 60t-OH activity.
Testosterone 150x-OH activity was sig-

nificantly reduced in gonadectomized males
as compared to male controls (Fig. 2B).
Replacement of testosterone to gonadec-
tomized males restored 150c-OH activity to
control levels. Testosterone administered to
intact females significantly increased 1 5oc-
OH activity to "masculine" levels. In
gonadectomized female mice, 150c-OH
activity was similar to that of female con-
trols, but was significantly less than male
controls. Administration of testosterone to
gonadectomized females significantly
increased 1 50c-OH activity, as compared to
gonadectomized females, to levels not sig-
nificantly different than in male controls. In

Table 2. Effect of gonadectomy (gonadex) and testosterone replacement on 6ax/15ax-hydroxylase ratio and
serum testosterone in male and female CD-1 mice

6ox/15c Ratio Serum testosterone (ng/ml)
Treatment Mean ± SD CV (%) Mean ± SD CV l%l
Male
Control 0.55 + 0.12** 21.8 3.8 ± 5.4 142.1
Sham-operated 0.64 ± 0.07** 10.9 11.9 + 8.9 74.8
Gonadex 2.27 + 0.37*.** 16.3 <0.05* NA
Gonadex + testosterone 0.62 + 0.05** 8.0 4.8 + 1.2 25.0
Female
Control 1.52 + 0.29* 19.1 0.05 ± 0.04 80.0
Sham-operated 1.58 ± 0.49* 31.0 0.05 ± 0.18 360.0
Sham-operated + testosterone 0.62 + 0.01** 1.6 5.4 ± 0.98** 18.1
Gonadex 2.15 ± 0.37*.** 17.2 <0.05 NA
Gonadex + testosterone 0.67 ± 0.20** 29.9 5.5 ± 0.46** 8.4

Abbreviations: CV, coefficient of variation; SD, standard deviation; NA, not available. Data are presented as means + SDs
(n = 3 sets of two pooled livers each).
*Statistically significant difference when compared to male control (Student's t-test, p<0.05).
**Significantly different from female control (Student's t-test, p<0.05).

summary, testosterone has an inductive
effect on hepatic 1 5c-OH activity.

The effects of testosterone on UDP-glu-
curonosyltransferase and sulfotransferase
activities were also investigated in hormonal-
ly-manipulated animals (Fig. 3). UDP-
Glucuronosyltransferase activity was signifi-
cantly reduced in gonadectomized males
(Fig. 3A). Replacement of testosterone to

gonadectomized males restored UDP-glu-
curonosyltransferase activity to control levels.
In female mice, testosterone administered to
intact females significantly increased UDP-
glucuronosyltransferase activity, as compared
to female controls, to levels similar to those
seen in male control animals. Gonadectomy
of female mice did not significantly alter
UDP-glucuronosyltransferase activity as

compared to female controls. However,
replacement of testosterone to gonadec-
tomized females increased UDP-glucurono-
syltransferase activity to "masculine" levels.

Gonadectomy or subsequent testos-
terone replacement did not significantly
affect sulfate conjugation in male mice (Fig.
3B). Testosterone sulfotransferase activity
was extremely low in hepatic cytosol from
all males irrespective of hormone status.
Testosterone administration to intact female
mice significantly reduced sulfotransferase
activity, as compared to female controls, to
levels seen in male control animals.
Gonadectomy of female mice did not signif-
icantly reduce sulfate conjugation as com-

pared to female controls, whereas testos-
terone replacement to gonadectomized
females successfully "masculinized" sulfo-
transferase activity. These experiments indi-
cate that the sex-specific differences demon-
strated in conjugation of testosterone to glu-
curonic acid are due to the inductive effects
of testosterone on this activity. Conversely,
it appears that testosterone has a suppressive
effect on sulfotransferase activity in female
CD-1 mice. We elected not to pursue sulfo-
transferase or UDP-glucuronosyltransferase
activities as potential biomarkers of andro-
gen status, however. Sulfotransferase activity
was abandoned because factors other than
testosterone contribute to its suppression in
males. UDP-Glucuronosyltransferase activi-
ty was abandoned because it responded sim-
ilarly to testosterone 1 5oc-hydroxylase activi-
ty, and both testosterone 6uc-hydroxylase
and 150c-hydroxylase can be measured
simultaneously in the same assay.

Because 6Q-OH activity was suppressed
by testosterone and 1 50c-OH activity was
induced by testosterone, we hypothesized
that a ratio of 6c-OH to 1 50-OH activity
would provide an amplified measure of the
androgen status of the mice. Table 2 illus-
trates the 6c/15oc-hydroxylase ratios and
respective serum testosterone levels of the
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mice from these testosterone modulation
experiments. The ratio of 6ca/15a-hydroxy-
lase activity was significantly higher in nor-
mal adult females than in untreated adult
male mice, and better differentiated the mas-
culine and feminine metabolic profile as
compared to individual hydroxylase activi-
ties. Further, the coefficients of variation for
the 6W/1S5a-hydroxylase ratio were much
lower than for serum testosterone levels.
These results indicated that the 6oa/15ct-
hydroxylase ratio was a good measure of
androgen status and may serve as a more sen-
sitive biomarker of androgen disruption than
measurement of serum testosterone levels
alone. The role that the other gonadal steroid
hormones, 170-estradiol or progesterone,
may play with respect to the 6/15ax-
hydroxylase ratio was next evaluated.

Gonadectomy and hormone replace-
ment experiments: 17p-estradiol andprog-
esterone. In the previous experiments,
administration of testosterone to intact
females altered 6a-OH and 15a-OH activ-
ity and the 6a/15at-OH ratio in female
mice. To determine whether estrogenic or
progestogenic compounds may influence
the expression of 6a-OH and 15a-OH
activity, 17P-estradiol (E2) or progesterone
was administered to gonadally intact males
(Table 3). Treatment of male mice with
E2or progesterone did not produce a statis-
tically significant difference in either 6a-
OH or 15a-OH activity when compared to
control males. There was no statistically sig-
nificant difference in the 60/1 50-OH ratio
when progesterone-treated males were com-
pared to control males. The 6W/15ax-OH
ratio, however, was significantly increased
following E2 treatment of males. This
increase corresponds to the suppressive
effect of E2 on serum testosterone levels.
We concluded from these studies that the
sex differences in testosterone 6a-OH and
15a-OH activities is primarily due to the
androgen status of the animal.

Vinclozolin treatment. To evaluate the
utility of the 6a/lSat-OH ratio as a bio-
marker of androgen disruption, male mice
were treated with vinclozolin. Vinclozolin is
metabolized in the liver to metabolites with
antiandrogenic activity (55). We hypothe-
sized that the antiandrogenic activity of the
vinclozolin metabolites should block both
the suppressive effect of testosterone on 6a-
OH activity and its inductive effect on
15a-OH activity, resulting in an increase in
the 6a/15at-OH ratio. Vinclozolin treat-
ment of male mice resulted in the induction
of both 6a-OH and 15a-OH, which is
consistent with a phenobarbital-type induc-
tion of hepatic P450s (Table 4). However,
the 6a/15a-OH ratio was significantly
increased in the vinclozolin-treated mice,
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Figure 3. Effect of gonadectomy (gonadex) and testosterone administration on hepatic microsomal (A)
UDP-glucuronosyltransferase and (B) sulfotransferase conjugation activities toward [14C]testosterone.
Data are presented as mean ± standard deviation (n = 3 sets of two pooled livers each). There is no statis-
tically significant difference between intact controls and sham-operated controls (Student's t-test,
p<0.05), so specific activities for control and sham-operated controls were combined for all additional
statistical comparisons.
*Statistically significant difference from combined male controls (p<0.05).
'*Statistically significant difference when compared to combined female controls (p<0.05).

indicative of "demasculinization." Thus, the
6Wa/15a-OH ratio was successful as a bio-
marker of exposure to an antiandrogen.

Indole-3-carbinol treatments. I3C proved
to be an effective modulator of serum testos-
terone levels. Treatment of male CD-1 mice
with I3C resulted in a dose-dependent,
although highly variable, decrease in serum
testosterone levels when compared to male
controls (Fig. 4A). A statistically significant
decrease in serum testosterone, however, was
only obtained at the highest dosage of 13C,
750 mg/kg/day. The 6a/lSa-OH ratio
increased as serum testosterone levels
decreased (Fig. 4B), demonstrating the inverse
relationship between serum testosterone and

the 6a/15ox-OH ratio (Fig. 4C). Notably,
the 6a/15oa-OH ratio at each dosage was
much less variable than the serum testos-
terone levels seen in the animals; a statistical-
ly significant increase in the ratio could be
detected at a lower dosage (500 mg/kg/day)
of I3C (Fig. 4B).

Discussion
Results from this study demonstrate that the
testosterone 6W/ 15a-OH ratio can serve as a
sensitive biomarker of androgen disruption
in CD-1 mice and is a more powerful mea-
sure of androgen status within the animal
than direct analysis of serum testosterone
levels. Circulating testosterone levels in male

Table 3. Effect of 17p-estradiol or progesterone administration on the hepatic testosterone 6ax-/15a-
hydroxylase activity ratio and serum testosterone levels in CD-1 mice

6ca-Hydroxylase 15ax-Hydroxylase Serum
activity activity 6o/15a-Hydroxylase testosterone

Treatment (pmol/min/mg) (pmol/min/mg) ratio (ng/ml)
Control male 105.85 ± 17.85 212.78 ± 52.63 0.51 ± 0.09 14.90 ± 12.9
Male +17p-estradiol 129.32 ± 46.65 153.45 ± 97.31 0.94 ± 0.26* 0.27 ± 0.18*
Male + progesterone 99.97 ± 14.39 150.71 ± 39.03 0.70 ± 0.24 14.3Q ± 6.0
Control female 207.73 ± 12.93 117.09 ± 4.60 1.78 ± 0.12* 0.09 ± 0.03*
Data are presented as means ± standard deviations (n = 3 sets of two pooled livers each).
*Statistically significant difference when compared to male control (Student's t-test, p<O.05).

Table 4. Effects of vinclozolin treatment of male mice on testosterone 6a-hydroxylase and 15a-hydroxy-
lase activities and the 6ot/15x-hydroxylase ratio

Specific activity (pmol/min/mg)
Treatment 6at-Hydroxylase 15o-Hydroxylase 6a1t5ax Ratio
Control 122.45 ± 26.62 181.81 ± 4.10 0.68 ± 0.04
Vinclozolin 453.11 ± 11.19* 387.78 ± 43.17* 1.13 ± 0.09*
Data are presented as means ± standard deviations (n = 3 sets of two pooled livers each).
*Statistically significant difference when compared to control (p<0.05).
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mice are notoriously variable. Mean testos-
terone levels in control male mice used in this
study ranged from 1.15 ng/ml to 14.9 ng/ml,
with coefficients of variation (CV) that
ranged from 75% to over 150% (Table 2,
Table 3, Fig. 4A). Similar findings were
demonstrated by Bartke et al. (61), who
reported peripheral plasma testosterone con-
centrations from <0.4 ng/ml to 44.4 ng/ml in
adult male mice. Variability of testosterone
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concentrations in peripheral circulation is evi-
dent as early as 20-30 days of age and contin-
ues throughout reproductive life (62).
Evidence indicates that the variability cannot
be eliminated by isolation, housing males
either briefly or chronically with other male
or female mice, or by administration of
human chorionic gonadotropin (hCG)
(31,61,63). In addition, the variability in
testosterone levels in samples collected from
the same animals on different occasions is
comparable to the variation between individ-
uals bled on a single occasion (31).

Our results indicate that the testosterone
6Wa/15ac-OH ratio provides a more powerful
and sensitive measure of androgen status in
CD-1 mice. In contrast to the variability
reported in serum testosterone concentrations
of control mice, CVs of the 6/ 1 5ax-OH ratio
ranged from only 1.6% to 31%. When mice
were dosed with 13C, a compound that modu-
lated steroid hormone levels, a statistically sig-
nificant difference in testosterone levels could
only be achieved at the highest dosage, 750
mg/kg/day. A significant difference in the
6W/ 1 5a-OH ratio could be detected at a lower
dosage, 500 mg/kg/day. Therefore, the
60c/15-OH ratio was not only less variable
but also a more sensitive measure of androgen
status. The ratio provides insight into the aver-
age androgen status of the organisms rather
than a snapshot of androgen levels at the time
of sampling. The 6a/15ax-OH ratio not only
detects effects of the chemical on endogenous
androgen levels but also responds to antiandro-
genicity of a chemical. Antiandrogens would
not be expected to lower serum testosterone
levels, but would interfere with the functions
of testosterone. The use of this biomarker will
greatly enhance the ability to detect androgen-
disrupting chemicals in assays involving CD-1
mice.

It appears that the 6Wx/15ax-OH ratio
cannot be universally applied to all species,
however. Little information is available
regarding sexual dimorphisms in testos-
terone biotransformation activity or andro-
gen regulation of these activities in other
species. Sexual dimorphisms of testosterone
hydroxylase activity are best documented in
the rat. For example, hepatic microsomal
testosterone 7ac-OH activity is expressed in
both sexes, but its expression is female-pre-
dominant (42). Testosterone 2ac-, 20-, 6,-,
and 16a-OH activities have been reported
to be higher in male rats than in female rats
(64). Sexual dimorphisms in hepatic metab-
olism of testosterone have been described in
hamsters (65), birds (66,6;7), and fish
(68,69), but particular sex-specific differ-
ences in hepatic testosterone hydroxylase
activities vary with species. Whether testos-
terone biotransformation profiles could be
used as biomarkers of androgen disruption

in other species has not been thoroughly
explored and would probably require the
development of different metabolic ratios
applicable to the species of interest.

In humans, epidemiological study of
testosterone levels has been limited due to
interindividual variability (70, 71). While
the interindividual variability in humans is
not as great as that seen in mice, the normal
serum testosterone values in mature adult
males range, depending upon the testing
method, from a low of 1.8 to a high of 18.4
ng/ml (72). The interindividual variability
is confounded by intraindividual variations
in serum testosterone values. Both circadian
and circannual fluctuations in circulating
androgen levels within individuals have
been reported (73-76). In addition, several
other factors have been isolated that appear
to be negatively correlated with serum
testosterone levels; these include age
(70,77,78), weight (70, 79), smoking
(70,80), and alcohol ingestion (81,82).
Thus, a study using testosterone levels in
men as an end point for endocrine disrup-
tion would have to control for several con-
founding factors.

Like male and female CD-1 mice, male
and female humans appear to produce the
same androgen metabolite profiles (83).
Preliminary studies in our lab, however,
indicate that sex differences may exist in
the rates of production of certain metabo-
lites in humans as well. Characterization of
these sex differences may allow for the
development of metabolic ratios that could
be used as indicators of androgen disrup-
tion in humans. Because it has been
demonstrated that individual steroid
metabolites may be eliminated in and can
be isolated from human urine, the poten-
tial exists for the development of diagnostic
immunoassays for the determination of
such metabolites (87). Once a pertinent
ratio is identified in humans, androgen dis-
ruption can then be assessed noninvasively
by assay of urine samples.
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